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Circuits with Active and Nonlinear
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Abstract—This paper presents a comprehensive full-wave anal- between electromagnetic waves and circuit elements com-
ysis of packaged nonlinear active microwave circuits by apply- prehensively. Since the interaction between electromagnetic
ing the extended finite-difference time-domain (FDTD) method. waves and active devices affects the system performance
Based on the approach of using equivalent sources, the de- . .. .
vice—wave interaction is characterized and incorporated into the ?'gn'f'cant!y' much aFtentlon has recgntly.been focused on the
FDTD time-marching scheme. As a consequence, analysis oflincorporation of nonlinear active devices into full-wave analy-
linear and nonlinear properties, including harmonic generation sis. Some frequency-domain techniques utilize the impedance
and intermodulation, can be accomplished by employing a large- matrix of the devices to achieve this goal. For example,
signal device circuit model. The implementation is first validated the spectral-domain approach has been extended to analyze

by comparing results of FDTD and HP MDS simulation of hvbrid mi int ted circuits with . d acti
the circuit without the packaging structure. The analysis then ybrid microwave integrated circuits with passive and active

goes beyond the capability of the circuit simulator to include lumped elements [1]; the finite-element method (FEM) has
the packaging effect. This analysis is useful in circuit design been applied to analyze microstrip circuits with a Gunn diode
involving electromagnetic compatibility/electromagnetic interfer-  [2],
ence (EMC/EMI) problems. Among available full-wave techniques, the finite-difference
Index Terms—EMC/EMI, FDTD, packaging, MESFET, mi- time-domain (FDTD) method attracts researchers’ interest
crowave amplifier. most particularly for its direct solution of Maxwell’s equations
in time domain [3]. Being generally developed, the method
|. INTRODUCTION has shown its versatility in full-wave modglmg of comph—l
cated structures, such as planar metallization structures with

T HE TREND of microwave circuits has been towarQyiscontinuities [4] and a leaky-wave antenna with lanchers
_ I highly integrated systems, such as monolithic microwayg) it aiso has wide application to the analysis of picosecond
integrated circuits (MMIC’s), comprising closely spaced elg;patoconductive switches [6] and interconnects in high-speed
ments, discontinuity structures, and passive and active devicgia| circuits [7]. Moreover, the conventional algorithm has
Circuit design in higher frequency range for these complgiaen extended to the analysis of active microwave circuits,
circuits, especially for nonlinear active circuits in a packagingcjuding modal analysis of multiple-oscillator active antennas
structure, encounters the severe problem of dealing with tm and small-signal analysis of a MESFET amplifier [10].
electromagnetic effect of radiation and the coupling effect qeeq, the advantage of full-wave techniques to go beyond
between different circuit elements. Most commercial desiqfc,it simulators lies in the analysis of microwave circuits
tools for such circuits are based on a circuit approach, in Wh'ﬁ“/olving electromagnetic problems such as electromagnetic
the S:parameter matrix and the harmonic-balance method &lgmpatibility/electromagnetic interference (EMC/EMI). With-

applied by dividing the circuit into small elements and cags; sufficient information, circuit design in such problems is

cading the characteristic of each element to obtain the OVer&l,Jcomplished mostly by trial and error. This paper presents

system performance. Consequently, the electromagnetic effee! onplication of the extended FDTD method to the analysis

is ignored or approximated at best. _ of packaged microwave circuits. A microwave amplifier with
Successful circuit design requires the inclusion of the eleg-MESFET is used as the platform. Section Il begins with

tromagnetic effect. This necessary requirement can be fulfillgd §iscussion of the modeling of nonlinear active devices.

by a full-wave approach, which includes the effect by solvingqiyajent voltage/current sources are employed to substitute
Maxwell's equations and taking into account the interactiofe devices and. combined with the device circuit model
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Fig. 1. A packaged transistor connected to the ground plane through vias at
the source port in a microstrip circuit.
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Fig. 1 shows a MESFET transistor soldered on the substr'qte ) o ) ) .
. . . . . Ig. 2. (a) The Norton-equivalent circuit governing the device—-wave inter-
in a microstrip circuit and connected to the ground plangton. (b) The Thevenin-equivalent circuit.
through vias at the source port. This packaged device may

occupy several FDTD cells. The modeling of this nonlinear

active device needs to carry out the incorporation of the devig formulation for complex circuit models and more advanta-
into the FDTD time-marching algorithm and account for th€0US for the mod_ellng of a multiport dew_ce. These _equwalent
spatial placement. A possible and complete full-wave methsgureces characterize not_ only _the scattering properties but also
for the modeling can apply a physical model as in [11], whicthe yoltage—current relationship at egch pqrt. _One end of each
uses a coupled system of Boltzmann's transport equatiSﬂu'Vale”t source conpects to.the microstrip line and the other
for carrier transport phenomena and Maxwell's equations fig @ groundeq via, Wh'Ch_ provides a voltage refergnce as well
electromagnetic wave propagation. In so doing, difficulty mﬁathe modeling of the vias at the source port. It is suggested
arise when the physical model is applied to the analysis o ta nu_mber of eqw_valent_so_urce_:s should be plgced across the
practical microwave circuit. Usually the size of meshes in tH/é(hole width of the microstrip line in order to avoid additional

device region is required to be much finer than that requir&b‘rrent dis_continuity at the junction [16]. Physically speaking,
in the passive structures of the circuit, which results in tht ese equivalent current and voltage sources stand for the

problem of memory limitation or nonuniform meshing. evice current and voltage at each port, respectively.

A feasible method is to represent the device with its Iumpecf Connecting field quantities and circuit quantities, the equiv-

circuit model, while the dielectric constant in the device regio% et_nt S(E)urtcr:]e'\sﬂ serve",as dep?_ndent zott;]rcc(ajs, t_he v_alugts of (‘;VT'Ch
is enforced to be that of air. Since the size of a devi‘:%a isfy bo it axwe dS equa |tons| int t‘; (_avtlce C'tr.cu' 2{% el.
is typically much smaller than a wavelength, this metho ecause voltage and current refate 1o the integration orthe

produces reasonable approximation and still retains a hi Hc.i H-f_|eld, r_espectlvely, th_e governing equatlon,for f|eld_up-
: . : ting is derived by taking integration of Maxwell's equations
degree of accuracy in full-wave analysis. Even in the ca &

. L Quer those FDTD cells containing the equivalent sources. The
where the size of a device is comparable to a Wavelenqg

M ODELING OF NONLINEAR ACTIVE DEVICES

(e.g., some power devices with large gate width), the methot egral form of Ampere’s equation at each port yields to

can also be applied by cutting the device region into several C N T =1 (1)
slices, each represented by a lumped circuit model. Although total ™ 1y dev = ftotal-

the dimension of a lumped circuit is zero, the effect from theygether with the device circuit model, this equation leads
spatial distribution and the packaging structure has alreadly,n equivalent circuit characterizing the device-wave inter-
been considered by adding parasitic elements, inductors, apgdon as shown in Fig. 2(a). The pair of a current source
capacitors in the circuit model to account for the time delay,g 5 shunt capacitor denotes the Norton-equivalent circuit of

as waves propagate through the device. FDTD cells as seen by the device. Similarly, the integral form
Hence, the key concept of the incorporation is to conneg Faraday’s equation yields to

guantities of electromagnetic fields with quantities of the

circuit model. Direct implementation places the lumped circuit —Liotal —= _ View = Viotal 2)
in the device region and matches internal nodes of the lumped dt

circuit with FDTD grids as used in [7]-[9]. Each circuitand the equivalent circuit is shown in Fig 2(b), where the
element, placed on the edge of a FDTD cell as a two-terminghevenin-equivalent circuit of FDTD cells consists of a volt-
element, can be directly incorporated into the FDTD algorithage source and a series inductor. The capacitéhgg means

as the formulation in [12], [13]. Alternative implementatiorthe total space capacitance of FDTD cells at each port, while
is to place effective electric currents, or equivalently, curretfie inductancd..:, is the total space inductance.

sources [14], in the device region. Differently derived, a In each time advance, the device voltage is evaluated from
dual approach utilizes effective magnetic currents, or voltagee state equation of the circuit in Fig. 2 and subsequently
sources [15]. This implementation of using equivalent sourcased to update the electromagnetic fields in the equivalent-
is more general than the direct implementation in the senseurce region. The state equation can be generally expressed

dVdev

dal dev
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Fig. 3. Inside the dashed box is the large-signal device circuit model of a MESFET used in this paper. The gate-source Cgpauithbrthe drain
current sourcely, are nonlinear.

as a nonlinear differential equation by the former criterion is the order of pico seconds for microwave
JX circuits, much smaller than that for the latter as the order of
AX) - — =B(X) - X+ F(X) (3) nano-second, so it causes no numerical burden because of
dt choosing a smalleAt.
where the vectoX denotes the state variables, the matrides
and B are derived from the circuit elements, and the forcing lIl. DEVICE CIRCUIT MODEL

term F comes from the sourcd.i, Or Vieta- Performing ) ] o

the forward difference scheme yields to a finite difference !N this paper, the large-signal circuit model of a MESFET
equation by in FDTD simulation is illustrated inside the dashed box in
Fig. 3, which also includes the Thevenin-equivalent circuit

AXp41) of FDTD cells. The internal node€’, D', S represent the

G(Xn-l—l) N (Xn-l—l - Xn) . . . . . . .
At intrinsic part of the MESFET. This circuit model contains

- B(Xnt1) - X1 —F(Xu11) =0 (4)  two nonlinear elements, the gate—source capacijorand the

. . . drain currentiy. Governed by theéPN-junction capacitance
where '_[he subscript (_Jlenotes the time step. Afterwards, |teratpr/]%del’ the gate—source capacitor is expressed as
searching forX,1 is performed by the Newton—Raphson
method [17], a multidimensional root finding method. Given Cyelvg) = Cyso 7)

gs\v g/ —

X,, as the initial valueX,,1; is calculated iteratively until it 1= vg/</>bi'

converges b
g y The drain currentlys, describing dc characteristics, relates to

X =X - X)) - G(X) (B) v, andug as

whereJ is the Jacobian matrix and its elements are defined &s(vy, va) = (Ao + A1ver s +A2v3 o+ Asvds o ) tanh(awy).
G (8)
Jpg = %p (6) Those parameters are listed in Table I. The dc characteristic
1 is plotted in Fig. 4.
The criterion of numerical stability is not only to satisfy the After choosing state variables as:], vG/D/,vd,iLg,iLd]T,
Courant condition in the FDTD algorithm but also to choosiis straightforward to derive the state equation from the nodal
At such thatJ is not singular. Typically theAt chosen for equation of the circuit. The resultant matrices in the state

Cus(vy) 0 0 0 0
C’gs(vg) ng 0 0 0
A= 0 ng —Cys 0 0 (9)
0 0 0 Gol(F-DL,—%L)  Gy[%L,— %L
0 0 0 GdPL,—FL]  Gal(¥-1DLy— FL
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TABLE |
PARAMETERS FORNONLINEAR ELEMENTS IN THE CIRCUIT MODEL
‘ Cgso ¢bi AO Ay Ay A3 a
\ 3pF | 0.7V | 0.5304 | 0.2595 | -0.0542 | -0.0305 | 1.0
500 T T T T
Vgs=0.0
400 4
Vee="0.4
. 300 B
<é: Vgs=-0.8
\é 200
Ves='1-2
100 Vie=-1.6 ]
VGS=-2.0
0 i L
6 8 10
Vps ( Volts )

Fig. 4. DC characteristics of the MESFET.

equation are found as (see (9) at the bottom of the previ

page)

where some notations are defined as

Ggs Gs
0 0
0 0
Gy(1- %) Gy
Cal Gi
0
0
Ids(vgavd)

ng =L+ Liotalg

Liz = Lg+ Liotald
G= Gg + Gy + G

and G, =1/Ry; Gy=1/Ry; Gs=1/R,.

Note thatB is independent of the state variables. The iterati

formula for X,, 41 is

JHl _~¢d
Xn-l—l _Xn

1 0A JF ;
il B— —lgxs
—I—l—{ At(avg A'>_ aXn-I—l } f( n+41
The device voltage is evaluated by
dir,

Vdev,i = _‘/total,i - Ltotal,i d

0 O
1 0
0 -1
1 0
0 1

Gg(]é_ %)‘/total,g - Gg%‘/total,d
__Gd?g‘/total,g + Gd(]- - %)‘/total,d

t

wherei means the gate or the drain port.

(11)

). (12)

(13)

(o]

IV. SIMULATION

The system under consideration is a microwave ampli-
fier containing a MESFET as shown in Fig. 5. A perfectly
electronic conductor (PEC) box is used for the modeling of
a packaging structure. There are two rectangular holes at
the input/output ports for feeding power. The circuit model
of the MESFET is described in Section Ill. The amplifier
excludes biasing circuits, so dc biasing is established by
directly applying dc sourced;;, andV,,, each with a source
impedance of 50, at the input/output ports. The biasing
conditions chosen arédgs = —0.81 V and Vps = 6.4
V. The circuit is designed to match at 6 GHz. The size
of the MESFET, which resides in the region of 80 mil in
the longitudinal direction, is much smaller than the guided
wavelength at 6 GHz.

The extended FDTD method of using the equivalent
voltage-source approach is applied to obtain time responses.
The computation domain is divided into uniform meshes of
dimensions 74x 40 x 128. The space steps chosen are
Ay =10 mil, Ay = 7.75 mil, andA, = 10 mil. Higdon’s
second-order absorbing boundary condition (ABC) [18] is
applied on the truncated boundary to absorb out-going waves.
The metal is assumed to be a perfect conductor of zero
thickness. There are ten and eight equivalent voltage-sources
employed to replace the transistor at the gate and drain ports,
%pectively. FDTD simulation starts with dc excitation by
using an exponential rising function to reduce the transient
time, and then an ac signal is imposed upon the input port.
The formulation of incorporating a dc source with a source
impedance into the FDTD algorithm is depicted in [12].

A. Analysis of the Circuit Without the Packaging Structure

The method is first applied to examine the small-signal
response of the circuit without the packaging box. In paper
[10], results of FDTD simulation applying a small-signal de-
vice model have been validated by comparison with measured
data in good agreement. Different from [10], this paper applies
the nonlinear large-signal model. A Gaussian pulse modulated
at 6 GHz is used as the ac signal and the amplitude is
small to allow the circuit to operate in the linear region.
The incident wave is the measured voltage in the system
of a semi-infinite microstrip line. Ac responses are obtained
by subtracting the time responses to those of pre-simulated
dc-only excitation. TheSparameters are calculated from the
reflected and transmitted waves.

A circuit simulator, HP MDS, is also applied to simulate the

\freuit. Particularly, the vias at the source port are considered

by adding an inductor of 0.05 nH, a typical inductance, con-
necting the source port to the ground nodes. According to the
device model used in FDTD simulation, suitable parameters
are set to choose the Curtice cubic model for the drain current
as well as the capacitance model and the junction current
model. Both results of FDTD and HP MDS simulation are
plotted in Fig. 6 for comparisons. The matching dip of FDTD
simulation is at 5.58 GHz, deviating from that of HP MDS
simulation for 7% in this case. This deviation may come from
the modeling of the vias at the source port. The frequency of
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Fig. 5. The structure and the dimension of a microwave amplifier. The packaging structure is modeled as a PEC box with two holes at the input/output
ports for feeding power.
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Fig. 6. Small-signal analysis of the microwave amplifier, without the packsig. 7. The spectrum of the output power using single-tone excitation of
aging box, applying the large-signal circuit model. different power levels at 6 GHz.

the matching dip is sensitive to the effective inductance of tlee Fourier transform. Applying larger time sequences can
vias, which cause series feedback effect. It is found that in H&®ver the numerical noise. In HP MDS simulation, the output
MDS simulation, the frequency of the matching dip decreaspewer is stem lines at harmonic frequencies. This is clear when
as the inductance decreases. comparing both results in Fig. 8, which show the curves of
Nonlinear phenomena is also inspected by evaluating ttiee output power to the input power for different harmonics.
output power, which is the dissipated power calculated froithe power at the 1-dB compression point is 25.1 dB. In this
the voltage across the loading resistor by the definition of simulation, it takes 15000 time steps for each input power
Vi(w)? level, and the execution time takes about 6.5 h using the SUN
Pow(w) = —— (14) Ultra 1 Model 140 workstation.

Ry Intermodulation is inspected by two-tone excitation at 3 and
where frequency-domain information is obtained by taking GHz of the same input power level. The spectrum of the
Fourier transform on the steady-state response. Single-tangput power for different input power levels is plotted in
excitation produces output power at harmonics due to tRé&g. 9. The output power appears only at the frequency of
nonlinearity. Fig. 7 illustrates the spectrum of the output powaerixing frequencies, or intermodulation products, which arise
with different levels of the input power at 6 GHz. Note thaas linear combinations of 3 and 6 GHz. For low input power,
the output power appears at harmonic frequencies only. Tie numerical noise in this analysis might be too large to
power between harmonics is actually the numerical noise frasbtain accurate output power. The output power of different
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Fig. 8. The output power of harmonics using single-tone excitation. Fig. 10. The output power of intermodulation products using two-tone
excitation.
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---- P,=206dBm
—— P, =16.08dBm
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Fig. 9. The spectrum of the output power using two tones of the same power
level P, at 3 and 6 GHz. Fig. 11. The spectrum of the output power in the case that a small-signal

Gaussian pulse modulated at 6 GHz is imposed upon a packaged amplifier,
an example showing the circuit oscillating after being placed in a packaging
intermodulation products is shown in Fig. 10. These results gfucture.

nonlinear analysis by FDTD simulation are in good agreement
with those obtained by HP MDS simulation. The analysis @fnq may result in oscillation. An example is the analysis of

these system responses verifies the capability of the extenged .ircuit with a packaging box of dimensions 1560 mil

FDTD method in dealing with nonlinear active microwavegg mil x 1250 mil. The first resonant frequency of this
circuits.

packaging structure is found at 5.72 GHz by FDTD pre-
simulation of a packaged uniform microstrip line. Using a
B. Analysis of the Circuit with the Packaging Structure small-signal Gaussian pulse modulated at 6 GHz, close to
When the circuit is placed in a packaging structure, 4A€ resonant frequency, the output power indicates that the
interesting question arises—how does the packaging structdckaging structure interacts with the circuit heavily and the
affects circuit performance? The analysis of a packaged circgifcuit is oscillating at the resonant frequency as shown in
is beyond the capability of circuit simulators but can bEig- 11.
accomplished by the extended FDTD method by including In order to avoid oscillation, dimensions of the packaging
the circuit as well as the packaging structure in the analysis$gucture are usually chosen such that the resonant frequency
a whole. Physically, the packaging structure forms a partially raised far above the frequency range of interest. For this
dielectric-filled cavity. Excited by the circuit, the cavity storepurpose, the dimensions of the packaging box are changed to
energy due to the natural resonance and the stored endrgy640 milx 186 mil x 690 mil. The first resonant frequency
is inevitably coupled back to the circuit. To a nonlineamoves higher at 11.79 GHz. The packaged circuit therefore
active circuit, this feedback makes the stability circles dritecomes stable. Fig. 12 shows the effect of the packaging
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device voltage and update the electromagnetic fields in the
device region. Based on this approach, linear and nonlinear
properties of the circuit without the packaging structure are

analyzed and results are in good agreement with those of HP
MDS simulation. The approach is also performed to investigate
the packaging effect, a cavity effect affecting stability circles

and resulting in oscillation in certain case.

In general, full-wave analysis is applicable to packaged
nonlinear active circuits in case the device circuit model is
available, even in very high frequency. Although full-wave
simulators are still much more time-consuming as compared
to circuit simulators, this analysis becomes necessary and pro-
vides useful information for circuit design in the environment
where electromagnetic effect of radiation and coupling effect
must be considered.

9 0c0F N —]
-10.0 1
\\
A}
-20.0 L 1 L > >
20 4.0 6.0 8.0 10.0
Freq (GHz)
Fig. 12. Investigation of the packaging effect on the small-signal analysis

by excitation of a modulated Gaussian pulse.
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